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SUMMARY

In this paper we consider a discretization of the incompressible Navier—Stokes equations involving a second-order
time scheme based on the characteristics method and a spatial discretization of finite element type. Theoretical and
numerical analyses are detailed and we obtain stability results and optimal error estimates on the velocity and
pressure under a time step restriction less stringent than the standard Courant-Friedrichs—Levy condition. Finally,
some numerical results obtained with the code N3S are shown which justify the interest of this scheme and its
advantages with respect to an analogous first-order time scheme. © 1997 John Wiley & Sons, Ltd.
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1. INTRODUCTION

In this paper we analyse a high-order-in-time splitting scheme applied to the discretization of the
time-dependent Navier-Stokes equations. We consider the following initial value problem: find
u: Qx]0, T[— R? and p: Qx]0, T[> R such that

%‘;——vAu+u-Vu+gradp=f in Qx]0, TT, (1
divu=0 inQx]0, T, )
u(t = 0) =1

in some given domain Q of R? (d=2 or 3), where the function f denotes the body forces and uy is
some given initial condition. We complement these equations with some boundary conditions, e.g.

u=0 ondQ. 3)

The discretization of these equations is well known to be critical, especially if, which is more and
more often the case, high-order discretization is required. We shall focus our attention on the case
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1422 K. BOUKIR ET AL.

where a finite element spatial discretization together with a second-order time discretization is used.
An analogous study with a spectral space discretization is given by Boukir et al.! The splitting scheme
can be obtained using the framework presented in References 2 and 3 to obtain high-order time
schemes. Those authors introduce a splitting technique in the general case of a partial differential
equation where two or more operators are represented. Some applications of their technique lead to
time discretizations of the Stokes and Navier-Stokes equations. Here the splitting scheme consists of a
convection step, which is treated using the characteristics method, and a Stokes step. This kind of time
discretization is well known under the name of the characteristics method or the Lagrange-Galerkin
method.

The current second-order-in-time schemes for the Navier—Stokes equations are generally based on a
semi-implicit or explicit treatment of the convection operator (by Crank—Nicolson, Adams—Bashforth,
etc. schemes). However, these procedures yield either unsymmetric systems or conditional stability
under strong conditions (of the kind At < Ch). The advantage of the scheme considered in this paper
is that it treats the convection operator explicitly and hence yields symmetric systems and provides
good stability properties (conditions of the kind At < Ch“/? in dimension d).

Actually, the scheme which is studied here is an extension to second order in time of the classical
first-order characteristics scheme.* Note that the latter scheme has been used for years by Benque et
al. 1 Theoretical studies have been investigated in References 5—8. Pironneau® has analysed the first-
order characteristics scheme together with a finite element method for the Navier—Stokes equations. He
obtains unconditional stability results in the case where the characteristics are transported by a divergence-
free field that is deduced from the velocity field. The opposite case, where the characteristics are transported
by the discrete velocity field, which is not divergence-free, has been treated by Suli,” who proves optimal
error estimates under some stability condition. Concerning other spatial discretizations together with
the first-order scheme, the finite difference method has been treated by Douglas and Russell® for the linear
convection—diffusion problem and an analysis of the periodic spectral method has been done by Suli
and Ware®® for hyperbolic and convection-dominated diffusion problems.

Concerning the second-order scheme, the linear convection—diffusion problem has been analysed by
Ewing and Russell'! and numerical studies have been developed by Boukir ez al.'? and Buscaglia and
Dari'® for the Navier-Stokes equations. In the latter case the second-order scheme deals with the
computation of two convected velocity fields in the convection step. These are used to discretize the
total derivative of the velocity with the help of a backward second-order differentiation scheme, which
leads to a Stokes step. The latter is solved by a Uzawa algorithm. We give here theoretical and
numerical results for a finite element spatial discretization in the case where the characteristics are
transported by a second-order approximation of the discrete velocity field, which is not divergence-free
(indeed, owing to the spatial discretization, only the discrete divergence is equal to zero). This is the
method that has been implemented in the N3S code developed at Electricité de France.'® We prove
optimal error estimates for velocity (in I°(H") and pressure in (A(L?). Moreover, we prove H !
stability under the not too stringent condition At < Ch4/6, where At and h are the time and space steps
respectively. Let us note that—as is often the situation, even in the linear case—the error bound and the
constant C~! of the stability condition tend exponentially to infinity as the viscosity coefficient v tends
to zero. A more accurate analysis of the influence of the viscosity parameter is presented in Reference
1, where stability results independent of the viscosity coefficient are given. Note also that in this paper
the analysis does not take into account the destabilizing effects of numerical quadrature in computing
the integrals involving the convected fields.!*'® To end with, we also present numerical examples
treated with the help of N3S which confirm the theoretical results and show the improvements given by
the second-order scheme compared with the first-order one for the computation of either steady or
transient states. However, this comparison does not deal with the mass preservation property of the two
schemes. This point is under investigation.
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HIGH-ORDER CHARACTERISTICS/FINITE ELEMENT METHOD : 1423

The outline of the paper is as follows. In Section 2 two equivalent formulations of the time scheme,
without spatial discretization, are presented. The consistency error is given. Different methods of
discretizing the equations of the characteristics are discussed. We introduce the finite element spatial
discretization of the scheme in Section 3. Stability and convergence results of the fully discretized
scheme are given in Section 4. Some numerical examples are treated in Section 5.

Notation

The norm of any Banach space E is denoted || - [|g.
Throughout the paper we work with a domain Q of R? (d = 2 or 3) which is assumed to have a
sufficiently smooth boundary 3Q. On the domain Q we shall use the L?(Q) scalar product

@) = L SV ()dx.

For any integers (m, p), p= oo also, we use the Sobolev spaces w™P(Q) (which are denoted H™(€2) in
the case p =2, where LP(Q) is the standard Lebesgue space), which are provided with the norms

1/p
Fol° .
"¢”W~~'(n) = (aen‘.ogm <m I ¢"U(ﬂ)) ifl <p<oo,

[Bllgmecy =  max  [[F¢llieo-
¢ W@ aeR‘,0< la| < m ¢ [~

We also recall that the seminorm
1l = IVPll2@)

is a norm on the space H}(Q) of the functions of H'(Q) vanishing on the boundary 3Q, which is
equivalent to the classical norm of HY(Q). For any fixed positive real T> 0 we introduce the time
interval [0, T]. We denote by L™(0, T; W™P(Q)) (resp. L0, T; W™P(Q)) the space of the functions
$(x, 1) defined in Q x [0, T'] that belong to W™P(Q) for any ¢ in [0, T} and satisfy

T
ess sup 90 llpmsiay < 00 (resp. [/ 166 O <oo).
te[0,77) 0

This space is provided with the norm
Pl oo, 7; ey = €58 sUp_[1@(., Dllgmaq)
1€[0,T")

)

1/2

T
(WSP- Pl 20,7 wmey = (L llo(. f)ll%v-.r(n))

The space of functions in L*(Q) with a zero average is denoted by LY(Q).
In mathematical mode, vectorial quantities are indicated by bold type.

2. DISCRETIZATION IN TIME; SECOND-ORDER APPROXIMATION

The basic idea of the splitting technique for approximating the Navier—Stokes equations (1)) isto
decouple in the temporal discretization process the convection part from the Stokes part. At each time

© 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 2§: 1421-1454 (1997)



1424 K. BOUKIR ET AL.

step the new velocity and pressure are updated by solving first an equation of convection type of the
form

ov
R Vv =0, 4
then a Stokes equation
%—vAv+gradp=f. 5)
divv=0. (6)

2.1. Presentation of second-order time scheme

Let us choose a time step At > 0 and define " =n At for any 0 < n < T/At=N. For any function
v: Q x [0, T] = R we note that .

vi(x) = v(x, 1"). @)

LetU% U", ..., U" be given in H} (Q and assumed to be approximations of u’, ul,...,u", whereuis
the solution of the Navier—Stokes problem (1)—(3). The first step consists of defining an approximation
U” of the solution at time £"+! of equation (4) provided with the initial condition at time ¢"

vi=r"=U" 8)

This is done by defining a convective velocity U™ (e.g. we can choose U™ =2U" — U™! or
U™ (1) = (1/AD[(" — )U"! + (1 — £~1)U”]). Then we set

U"(x) = @(x, I"*), )

where ¢: Q x [t", "] - R? is the solution of the passive convection problem

% =-U"-Ve¢ inQ x}", ¢+,

o(x, M) =U"(x), x€Q, (10)
¢© =0 ondQ.

Similarly, an approximation flﬂ_l at time ! of the solution of (4) with the initial condition at time
Tt

vit=")=U"", (1)
is given by
0 ) = w(x, ), (12)

where §: Q x [, 1] - R? is the solution of the problem

W _ —U™-V§ inQ x)"t, ],

ar
O Y =U"x), xeQ, (13)
=0 onadQ.

INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1421-1454 (1997) © 1997 John Wiley & Sons, Lid.



HIGH-ORDER CHARACTERISTICS/FINITE ELEMENT METHOD ' 1425

These two approximations are then used in order to define an approximation (U™, prtly of
(u™+!, p*1) by solving a Stokes problem: find U™*': Q — R? and P**!: Q — R such that

U+ — 40 + 0

A —yAU™! P =l in Q, (14)
divU™' =0 inQ, 15)
U™ =0 over Q. (16)

It is an easy matter to check that (9)(16) provide a recurrent approximation (U™, P+ of the
solution (u, p). ,

As already explained by Maday et al.,} this splitting scheme is a second-order characteristics method
in the same spirit as the scheme analysed by Ewing and Russell.'! To understand this, we introduce for
any given x in € the characteristic curve X;+! defined by ‘

) e (W an el
the solution of (the backward problem)

dx:+l

I U r) in e e

XoH(eH) =x.

a7
Since U™ = 0 on 3Q, we have X?*!(¢) € Q. We then verify easily the following lemma.

Lemma 1

The quantities U"(x) and I-J"_l(x) are the values of U” and U™~! respectively at two feet of the
characteristic curve X?*! in the following sense:

U"(x) = U"(X;H (), (18)
0 () = Ul xer e ). (19)

From now on we shall use the notation U™ = 2U" — U""!. We define u™ and x2*' in a similar way
as U™ and X?*! but with the help of the continuous solution of (1)~(3). Then we set

i"(x) = v (G (), (20)

i) = u oG e ). @1

2.2. Consistency properties -

Our concern now is to prove that (9)—(16) provide a second-order approximation of the solution
(u, p) of the Navier—Stokes equations (1)~(3). For this purpose let us first analyse the consistency error

3wt 4 4§

e(x,n+1)= ( AT — vAu™t! £ VpH — f"“)(x),

© 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1421-1454 (1997)



1426 K. BOUKIR ET AL.

which from (1) is equal to

a+l _ qmn g Sn-l
e(x,n+1) = [3“ + 24:t +u _ (%‘:_(tn+l) +ut! .Vun-{-l)](x). (22)
Lemma 2
Let > 0 be such that u e [€*([t, T] x Q). For **! > © we have
3. n+1
e(x,n+1) = —-A2 (; d clilt: " +o7 32 * Vu(x, t"‘”)) + O(AP), 23)
where
B () = u(t (), ). (24)
Proof. We immediately check that
dhn+l
< — ("= ——(x, ) 4+ u™(x) - Vut (x). (25

It follows from (20)—(22), (24) and (25) that

hn+| tn+l 4hn+l m hn+l —1 n+1
e(”H)=(3 () — e + ) _

(tu-H)) + [(uru _ un+l) . Vun+lV](x).
(26)

The first term of (26) represents the consistency error of the standard second-order backward
differentiation; thus

3ngH (") — 4bgt' (") + i) dbit
2A¢ dr

Moreover, u™ = 2u” — u”"! is a standard second-order approximatlon of u™*!: we have

d’ h"

(D ——At2 (") + O(AP). 27

u™ —u Atz( )( 1) 4+ O(AP). (28)

Combining (27) and (28) leads to (23).

Remark 1

Actually, the notation O(AP) is a quantity depending on x but which is uniformly bounded on Q
with respect to x.

Remark 2

Lemma 2 tells us that (3U™! — 40" +I:J’H)/2At is a second-order backward differentiation
approximation of the total derivative du/df = 3u/3f +u - Vu. The expression (26) can also explain
why U™ = 2U" — U™ is the only linear constant coefficient combination of U" and U™! that gives a

INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1421-1454 (1997) © 1997 John Wiley & Sons, Lid.



HIGH-ORDER CHARACTERISTICS/FINITE ELEMENT METHOD 1427

second-order scheme. Of course we could have used (1/AD[(f* — )U""! + (¢ — £"~')U"] instead of
U™(¢); this would have led to a second-order approximation as well.

Remark 3

Note that the above scheme is defined using only one characteristic curve that is defined using only
one characteristic curve that is defined on an interval of size 2At. Then two feet of this characteristic
curve are used to define the convected fields (18) and (19). We give here another procedure to define
these fields which also leads to a second-order global scheme.'* At each time step we compute a
characteristic curve that is defined on an interval only of size At as

X, ] - Q,
the solution of (the backward problem)
dxn-H ) . .
3= U Xgt@) i, L
x:+l(tn+l) =x,
where in this case
Un+ — %Un - %U"_l.
The convected velocity fields are then given by
U"(x) = U"(XZH (),
sn—1 n— n — yyn— n
U () = U™ Kigpaa 1) = U™ XEH (7)),
where the characteristic curve X5, y € Q (here y = Xj+'(¢")), is defined using the velocity U-D+ and
assumed to be already computed in the previous time step ¢”. This method seems efficient for
approximating the total derivative du/d¢ = du/d¢ + u - Vu; in this way the continuous characteristic
curve could be approximated more accurately. Note also its good properties of induction which allow
us to obtain stability results independent of the viscosity coefficient' for the linear convection—
diffusion problem.
2.3. Discretization of characteristics
From now on, with any sequence (v"), we associate v** defined by
V* =2V — v,
In practice, in (18) and (19) the feet of the characteristics X*+!(#*) and X2*!(¢"~!) are not computed
exactly. We denote by x and x any approximation of these quantities,
x ~ X, (29)
x~ XM, (30)
and consequently we obtain approximations U”" and _Q_"" of the convected fields U" and !
respectively defined by

U(x) = U"(x) if xeQ, 31)
- 0 otherwise,

o JUT'@ i x € (32)
= 0 otherwise.

© 1997 John Wiley & Sons, Lid. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 14211454 (1997)
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Actually, the notations x and x are improper, as they should be denoted x"*! and x**! respectively. For

the sake of convenience, however we shall suppress the superscript, making it implicit in the use.
Replacing U" and U" in (14) by U" and U"" 1 respectively, we obtain a new scheme. We are

interested here in approximations that preserve the second-order accuracy of the global scheme

(9)«16).
We focus our study on a first-order approximation suggested by Ewing and Russell;'! we set
X - U™(x)At, (33)
X=x-— 2U™(x)Ar. (34)

We define u” and u —1 in similar way as U” and 2"‘1 using the approximation (33), (34):

u” : —v — u* o)
w(x) = (_) if ;-.-x u™(x)At € Q, 35)
otherwise,
w1 o u""(é) if x=x-2u"(x)AreQ, 36)
= "o otherwise.
We can check that the consistency error
3 n+1 _ 4u” + n—1
e(x,n+1)= (_u_—hA!t_—g— — vAu"! 4 vp"t! — f"'”)(x)
is also of second-order accuracy.
Lemma 3
Let 7 > 0 be such that u € [¢*([, T] x Q)]°. We have
3
e(x,n+ 1) = —A# (; d 5‘; @ + 92 *Vu(x, t”“)) +0(AP),
where
g @ = ux - (' - ™), 9). €]

The proof of this result is similar to the proof of Lemma 2 with h replaced by g.

The particularity of the procedure (33), (34) is that (17) is approximated by a first-order scheme that
does not pollute the second-order accuracy of the global scheme (9)—(16)

In what follows we shall use a bound of the consistency error in the L 2(Q)-norm. This is obtained by
following the same lines as in the previous proofs under a less stringent regularity assumption on u
using a Taylor formula with an integral remainder. This is stated in the following lemma.

Lemma 4
Let 7 > 0 be such that

13 1
u € L®(1, T; W'=(Q)), %27 € L*(x, T; LX), d 5‘? € Lz, T; L{(Q))

INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1421-1454 (1997) - © 1997 John Wiley & Sons, Ltd.
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hold, where g2*! is defined as in (37). We have

N
3 Atle( Ml < Clw, TIAZ (38)
n=.
Remark 4
(i) Another first-order approximation of (17) could be considered by setting
x=x-U"@A, (39)

where x is defined as in (33). This modified procedure allows us to bend the discrete characteristic
curve and thus follow more accurately the continuous one than does the approximation (33), (34).
However, it is shown that the second-order accuracy of the global scheme is lost in this way and yields
to a first-order approximation.'!

(ii) The approximation (33), (34) combined with a multistep method bends more efficiently the
discrete characteristic curve and leads to more accurate discrete feet x and x. For any positive integers
1>0 and 7 >0 we define the substeps dt=At/l and 67 =At/l' and we set for 1 < i</ and
1<j<7’ -

Xy =X, _!_0 =X,
x; =Xy — U (x_y)d, x=x_,-U @), (40)
X=X, é = él"

We can show'? that if we use the same number of substeps (/= F) for the computation of the two feet x
and x, we obtain a second-order global scheme. However, we remark that for /=1 and I =2 we get the
above modified procedure (39).

(iii) Note that any second-order approximation of (17) preserves the second-order accuracy of the
global scheme. For instance, the use of a second-order Runge—Kutta scheme allows us to compute x
and x as well as bend the characteristic curve in the same spirit as in (39). We set

x=x—U"@x')Ar, where x'=x- U"‘(x)%t-, 41
t
X=x— U"‘(é‘)At, where é' =Xx- U"‘(;)éz—. (42)

If more accurate approximations of these feet are required, we can also apply a multistep method to
(41), (42) in the same spirit as in (40). We define 1 <i</and1l <j < r

X=X |
t

x =X - UML), where 1y =x - UGS, @)
x=x,
X, =X

x =x , —U™x' )6, where x' =x —-U"(Qx )Esi (44)
5 S+ S-177 Sj-1 7 Sl =-172"

X=X

Here / and ¥ are chosen independently.

© 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 14211454 (1997)
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In the next sections we prove that the semidiscretization (9)-(16) combined with a spatial
discretization is stable under some condition between the time step and the spatial discrete parameter.
We do not know currently how to prove that the semidiscrete scheme (9)—(16) is stable.

3. PRESENTATION OF FULLY DISCRETE PROBLEM

The semidiscretization (9)(16) is completed by a spatial discretization that can be either of finite
difference, spectral element' of finite element type. Here we shall investigate the properties of the latter
as regards stability and convergence. The basics of the finite element discretization are first a
triangulation into X non-overlapping elements T, 1 < I < K. We denote by A, the diameter of 7! and
we introduce the space step h = sup, <, < x /. We suppose the triangulation to be uniformly regular.

If the elements are triangles or tetrahedra, * represents the set of all polynomials of global degree
< k; if the elements are rectangles or hexahedra, 2* represents the set of all polynomials of degree
< k with respect to each space variable. We can now define the approximation spaces

Y, = {¢ € C°Q); olp € P*(T"). 1 < I <K}, (45)
0s = {p € L§(Q); ¢l € 2X(T), 1 <1 < K). (46)

The space [H} (Q)Y° is then approximated by
X, = [¥, N Hy (1. @7)

We assume that the degrees k and ¥’ are chosen such that (X;, Qy) satisfies the inf-sup condition

Vv,
inf sy V' Vi g1) =B >0. 48)
2€0—(0 v,ex, 1Vall (o) gl 2y

More precisely, let ¥}, denote the kernel of the discrete divergence operator,
Vi ={vy € Xp; (V- v}, 44) = 0, Vg, € O}, (49)

and V ={ve [HO‘(Q)]"; V-v =0}. It is first obvious that ¥ N X, C V}. Besides, let H(')',, denote the
projection operator from Vonto ¥}, defined as

(Vv —TI5,v), V) =0, Vv, €V, (50)
Thanks to (48), we have for 1 < r < k+ 1 the estimate'’
vwe VNH@QF, Iv =TI ,vllz@ +Alv — T vilme < CHIVIa@- (1)

We have also the W'%°(Q) and L*(Q) bounds for v € [H**(Q)]" as

IVl premy < CUIVIgroogy + 2 IV o), (52)
WL Vil < CUIVI Ly + B 2 VIl geery)s (53)

where C is a constant independent of 4 but depending on Q. These results are certainly not optimal but
are sufficient for our purpose.

INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1421-1454 (1997) ) © 1997 John Wiley & Sons, L.
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To show the result (52), for instance, we introduce the interpolation operator /, and the element /,v.
We have from the triangle inequality

I Vil pro@y S MaVllgnogy + ITIo 4V = LVl
which, using the inverse inequality'® [[v,| W@ < Ch=2||v4ll i gy, Yields

WIS sV oy < IaVilmneoiy + CH™ 25 4¥ = Li¥llincay
< Mwvllmrey + CE (Mo 4V = Vil + IV = Vi)
From (51), the H' error estimate and the W' stability property of the interpolation operator'® we

deduce (52).
Let IT, denote the projection operator from LX(Q) into Q) defined as

(Mg —4.9,) =0, Vg, € Q. (59
We have for 1 < s < ¥ +1 the estimate!”
Vg e Q) NHQ), lg — gl < CHlqlm@q) (55)

The fully discrete scheme can now be defined. Let (U, PY), ..., (UL, P}) be given in ¥, x O, and
as in Section 2 let us associate a convective velocity Uj* =2U} ~ Uj~!. We first define the
characteristic curves as solutions of (17) with U}* instead of U™ and set

U,(x) > UpX3H(e"), (56)
T @ urieate), 67

where the symbol = indicates that some time discretization of the characteristic curve (or convection
problem) is added; for instance, following the suggestion of Ewing and Russell,!! we can set

Uy(x) = U}(X), where X = x — AfU}*(x), (58)
T '(x)=U"'®), whereX = x — 2AMU(x), (59)

or any other discretization that preserves the second-order accuracy in time. From now on we shall use
(58) and (59).
The solution (UZ“, P",,“) € X, x O, is then computed by solving the Stokes problem

2At

— —n—1
3UM — 4T, + T,
(60)

, Vh) + V(VUZ+| , Vv’,) - (V Vi, });:+l) = (f"+l, v,,), Vvh € ’th

(V-Ut',q4) =0, Vg, €0,

In the next section the notation bar (or double bar) upon any function v” denotes as in (58) and (59)
the values at the feet of the discrete characteristic curve defined with the velocity U;* (and not with v**)
such that

V'(x) = v(X), where X = x — AtU}*(x), “(61)
77 '(x) = v" (), where X = x — 2A7UP*(x). (62)

© 1997 John Wiley & Sons, Ltd. INT. J. NUMER. METHODS FLUIDS, VOL. 25: 1421-1454 (1997)
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4. ANALYSIS OF DISCRETE PROBLEM

4.1. Preliminaries

Let n be a fixed number, 2 < n < N; we introduce or recall the notations

wi(t) = I u(), ‘ (63)
n(t) = u()) — wi(9) = u(®) — I u(®), 64
wj = w, (") = I u(”), (652)
" = (") = u(”) - My u(®), (65b)
u” =u(?"), (65¢)
£ = U} - wj = U} — Ig ("), (66)
where H(l,,,, is defined as in (50). For the sake of convenience, in the sequel we use the notations -
u"(x) = u”(x), wherex =x—u"(x)At, (67a)
u!(x) =u"!(x), wherex =x—2u™(x)Ar. (67b)

Moreover, we recall that the notations X, X and ", ! have been introduced in (61) and (62).

It is well known’-2° that solutions of the Navier-Stokes equations exhibit initial (in time) irregularity.
Methods to deal with the lack of initial regularity are proposed in those references; see also the Annexe
of Part 1 of Reference 14. Our concern here is not to consider this problem and thus in all that follows
we shall set #£=0 and assume that u e L®(0, T; H*'(Q)), 8u/dt € L*(0, T; H¥(Q)) and
p € L0, T; H*+'(Q)). We also assume that the regularity properties

d3 g:‘H
dt3

&
e L0, T WH°@Q), = € LX0. T: LX),

hold, where g2*! is defined as in (37).
We derive from (51) the estimate for ] < r < k+land1 < p < o as

€ L*(0, T; L(Q))  (68)

Il 0.7:2200)) + AN, @) < CH Il oo, 7210 (69)

Problem (60) is not completely defined, since it must be provided with the initial conditions U2 and U}.
We assume for instance that they are initialized in such a way that

£=0 (70)
and U} is an approximation of u' such that
IE' 1220 -
T VIVE 72y < K(h, AD), ()
with
K(h, Af) < C(AF + K + K&+, (72)

Here C indicates some positive constant independent of At and .

4.2. A priori stability result

. To prove the stability and convergence theorem, we need Lemma 4 and the following Lemma 5. We
follow the framework of Ewing and Russell.!! We denote by C(.) any constant independent of At, h
and n but depending on the set Q and the variables in the brackets.
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Let us define for any ¢ € [f~2,],2 < I < N, the following mapping on Q:
x > X)) =x~ (¢ - )" ). (73)
Since Xj, is a subset of W1:%°(Q), under the sufficient condition
1
At < ——8————
2005 ooy

on the time step it is an easy matter to verify that this mapping has a positive Jacobian, since ul
vanishes on 9Q; this mapping is one-to-one and thus it is a change of variables from € onto Q (see
References 21 and 14 for the two- and three-dimensional cases respectively). This yields for any
positive functions ¢ on €2 the estimate

[ e(®w)ex < | owex (9)

where the constant C is independent of /. We are thus led to introduce a uniform condition on Az with
respect to 1 < / < N — 1 and assume that

(74)

1

oL .
At < T (76)
where
— I
L= max U .o (- a7

The condition (76) allows us to verify the property (74) for any /, 2 < I <*n+ 1. We denote also

— Ix
M, = max 104 Il (78)

From Lemmas 6-9 stated and proven in the Appendix, we can prove, also in the Appendix, the
following Lemma.

Lemma 5

Let us assume that foranyn, 1 < n < N—1,

1
At < -2'1—" ; (79)

we have
U = Wit gy < C(My, w,p, T, 1/VXAP + hE + K, (80)
where C(M,, u, p, T, 1/v) blows up (exponentially) when v tends to 0 or T tends to co.

The result of Lemma 5 gives an error estimate at each time step. We note that the constants in the
error approximation (80) and in the condition (79) depend on  through M, and L, respectively. The
aim of the next subsection is to give an error approximation independent of n.

4.3. Stability and convergence results

4.3.1. Stability and error estimate for velocity. From a bootstrapping argument we are able to derive
from Lemma 51 the H' stability and establish convergence properties. This is given in the next
theorem, which provides an optimal error bound.
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Theorem 1

There exists constants C;, Cz, Cs and C, independent of h and At such that for & sufficiently small
the condition

At < C A/ (81)

yields foralln, 0 < n < N,
10y < G Ul = < C3 (82)
(., ) = Ul < CoAP + BE + HHY), (83)

Before giving the proof of this theorem, we describe the behaviour of the constants C;, C,, C; and
C, in the following remark.

Remark 5

C, and C; depend only on the initial values U? and U} and the solution u of the problem (1)~(3).
More precisely, we have ’

C, = max{l[Ujll 1), Ukl gy 20Wall=o, ;1 ) (84)
Cs = max{|| Uyl sy Uk llzoo(@s Wil oo, 7:=ap}s (85)
where we recall that
w,(t, ) = I ju(t, ).

The constants C, and C; are independent of h thanks to (51) and (53). The constants Cr! and C4
depend not only on the initial values U) and U} and the solution (u, p) of the continuous problem (1)
(3) but also on the final time 7T'and the viscosity coefficient v. Moreover, they blow up when v tends to
0 or when T'tends to c0. This means that this theorem is not yet proved in the steady state case. For the
case v— 0 it is treated by Boukir e? al., who obtain stability results independent of v.

Proof of Theorem 1
Thanks to (52), we choose Cs such that

10 o) IUMImn Cs,_
ax{ U 2 ¢ ), h ;, ¢ ), "w,lllLeo(o.T;Wl.on(Q)) < —zéh d/6. (86)

To show (82), we proceed by induction. Let us denote P(U}) as the property

U@y < Ca 37
P(U) < | Il < Cs, (88)
U4l pro@ < Csh™/S, (89)

where the constants C,, C; and Cs are those defined in (84)—(86). From (84)—(86) we deduce that
P(U?) and P(U}) are true. Let us assume that P(U}) is true for all 2 < I < n (induction hypothesis); we
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shall prove that P(U;,"”) is true. We have from the induction hypothesis and the definitions (77) and
(78)

M, < 3G, (90)
L, < 3Csh~4/8. o1

For a proper choice of C) (C; < 1/6Cs) the conditions (81) and (91) allow us to fulfil the hypothesis
(79). From Lemma 5, since ¥’ <k, this leads to

I — Wil < CCHH™! + A7), 92)
Using the triangular inequality, we get
I g < 10 = Wil + W -
It follows from (84) and (92) that
C
NG ey < C(CH™ + AP) + 2. (93)

For h sufficiently small and owing to (81), we obtain the property (87) for /=n+ 1. To show (88), we
first use the triangular inequality

U lpm@y < WU = Wil + IWE o).
Using the inverse inequality |[IV4llr=i) < C log(1/M)|Ivpllgnqy in 2D or |, e <
C(1//B)|IV4llqy in 3D, we have

1 ,
Clog(z) 10 — Wit gy + W) gy in 2D,

N0 |y < 1 (94)
Cﬁ U5 — Wit ey + W3+ Ny in 3D.
It follows from (85) and (92) that
log %) C(C)(R* ! + AP) +—C2—3 in 2D,
105 Moy < (95)

1 K41 G
JhC(C3)(h +AP) + 5 in 3D.

For h sufficiently small and with the condition (81) the property (88) for /=n+1 is deduced from
(95). To show (89), we first use the triangular inequality

105 I premy < IUI* = Wi [l prsgy + W5 I p1eg)-
Thanks to the inverse inequality [[Vyllpreoiy < Ch™2[[Vyllineay'® we get
103 gy < CH N0 = Wit gy + W3 lieeg)- (96)
It follows from (92) and (86) that
N0 gy < B2C(CH + AP) + —Czih-“/6

< KO HP + APRP) + %h“"“. 97
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Then the result (89) with /=n+1 follows from the condition (81), a proper choice of C; (i.e.
sufficiently small to satisfy in addition the inequality C}C(C;) < Cs/4) and the hypothesis that & is
sufficiently small in the case ¥ +1 — d/3 >0. If¥ +1 — d/3 =0, we get the same result by slightly
modifying the proof (choose a bigger Cs). This finishes the proof of the stability result (82).

Using the result (89) and the condition (81) on At with C; < 1/6Cs, we can apply Lemma 5, and
combined with the estimate (82), we get the result (83).

Remark 6. The case div Up* =0

When the characteristics are transported by a divergence-free velocity® and assumed to be exactly
computed, instead of the mapping defined in (73), we use the transformation y = Xi(t), where Xi(t) is
defined as in (17). From Liouville’s identity the Jacobian of this mapping satisfies

J() = exp (L \" -Uﬁ,’")*(xg(t))dr) =1. (98)

The condition (74) can be omitted in the previous investigations. Thus in the proof of the theorem we
do not need the inverse inequality which fixes the norms ||.|| g1y 2nd ||.ll (). Only the inequality
which fixes the norms ||.|| =gy and |-/l (q) is used. This leads to the following corollary.

Corollary 1

There exist constants C}, C}, C; and C} independent of k and At such that for h sufficiently small
the conditions

V.U =0,
C 99)
< —1— @ < 1/4 4
At Tog(1 /7 (in 2D), At < Cih (in 3D)
yield foralln, 0 < n < N,
1Gillm@ < G Uil =y < C3, (100)
., ) = Ul < Co(A2 + h* + K, (101)

where the constants C}, C}, C; and Cj have the same behaviour as the constants C;, C;, C; and C4 of
Theorem 1.

4.3.2. Error estimate for pressure. The following result on the pressure is a consequence of the
previous results on the velocity.

Theorem 2

There exists a constant C independent of & and At but dependent on u, p, T and 1/v such that the
condition (81) yields

N 1/2
(15—:6 Atlp’ — Pj,n{zm,) < C(AP + B + K¥+Y), (102)

Proof. Let us introduce the element IT,p' of the space O;; we have from the triangle inequality
Ip' = Phlley < IP' — 'l + ITTp' = Phllzy- (103)
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Since ITjp! — P} is in Oy, it follows from the inf-sup condition (48) that

v, ! — P4
ITTip! = Py < € sup 0 TP =0,
v, EX, Nvall e ()]

Multiplying the consistency error (117) (see Appendix) by v, € X, and subtracting the resulting
expression from (60), we obtain

- !l—l) — (ﬁ -2 _ gl—2)
2At "V

4 =]—-1
(Vv Ip' = Py = — (e(. D), v)) + ( @
N (311' T vh) . (4(2’" ~gH-E - v,,)

2At 2At

B (3§l _ 4§l—l + gl—z

2At ’ "h) +v(V(' = UL), Vv) + (V- v, mp' - p).

Using the Cauchy—Schwarz inequality, we have

358 — ¢!

ke +v|U} - u'IH,(Q)HIH;.P' — Pl (104)

Q)

4
1M — Pl < g IF!l 2 +
‘=

where the terms F' are those defined in (117), (119), (123) and (134) (sec Appendix). Summing (104)
from [=2 to N, we obtain from (103)

N N 4 N
IZ;At"Pi —PI";}(Q) < C(lzz AT —PI"%}(Q) + ; IEZAt“ﬁ“iz(n)

N 2 N |
+v ’):2 AU}, — o+ f\—“; A "55'"123«»)- (105)

To handle the last term on the right-hand side of (105), we refer to the estimate (146) (see Appendix),
which leads to

n ! 22 n n
P e < 35 Re) + 3w + K 40 (106)
=2 t i=11=2 1=

which from the inequality 2ab < a” + b* leads to

n+1 ||6E 112, 4 ntl 1}n+1 SEN2 n+l
F 18 le@ o 55 ARG +5 3 18l | 3 g ogh + kG ). (107)
= At izl i=2 2im At =2

The result (192) is then deduced from (105), (55), Lemmas 6-9 (see Appendix) and Theorem 1.

5. NUMERICAL RESULTS; COMPARISON WITH FIRST-ORDER TIME SCHEME USING
CHARACTERISTICS

In this section we present numerical results obtained with the N3S code developed at Electricité de
France.'

The first numerical example deals with a steady case that has an analytical solution. Though the
current theoretical results are valid only for unsteady computations (i.e. the solution is computed for
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nAt < T), we can observe that the difference between the numerical steady state velocity and the exact
solution still behaves as expected from Theorem 1 (for the computation of a steady state the solution is
the limit of the sequence (U7),). Stability for steady computations is investigated in Reference 14. We
also provide numerical results on the pressure accuracy. For the second example an unsteady case is
treated where the transient state is studied. In both cases the second-order scheme is compared with a
first-order scheme®’ defined as follows. The convection step is solved by computing for x € Q the

characteristic curve
X e, o) - R

the solution of

dx:+l n n 3
2= UXE) il L (108)
X:+l({l+l) =x.
We set
U"(x) = U"(XH (). (109)

Then we solve a Stokes problem by computing U™t Q —» R and P"!: Q - R, the solution of

Ut — ﬁn

w — AU 4 VP = n Q,

divU™' =0 inQ,

U™ = uit! over Q.

(110)

The numerical results show clearly the improvements given by the second-order scheme.

Remark 7

The scheme that has actually been implemented is based on the following approach.

(i) For the first- (resp. second-) order scheme the characteristic curves are computed with the help of
a first- (resp. second-) order Runge-Kutta scheme together with a multistep procedure in the first
example (see (40) (resp. (43) and (44)). In the second example, in the case of the second-order scheme
the characteristic curves are computed with the help of the multistep first-order scheme (40). Note that
in the case of the second-order scheme the results are the same with the second-order Runge-Kutta
scheme (43), (44) or the scheme (40).

(ii) As regards the f_u]l_yl discrete scheme (58)—(60), in ﬂl? computations, for the sake of simplicity,
the quantities U, and ﬁ: are replaced by 1,U, and l,,ﬁ: , where [}, is the interpolation operator at
the velocity nodes. An analogous approximation is performed for the first-order scheme. This is not
taken into account in the previous theoretical analysis. Nevertheless, estimates similar to (83) and (102)
are observed numerically. However, conditional instability has been noticed:?? the scheme blows up
when the time step is too small. Such a behaviour has already been observed in References 15 and 16,
where the stability in the case of non-exact integration is treated for the first-order scheme. Referring to
those papers, we can suspect the interpolation operator of polluting the stability of the scheme. A
similar conclusion is given in Reference 14. '
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(iii) Note also that in the first case computations are realized for the non-homogeneous Dirichlet
boundary condition problem.

Remark 8

Concerning the difference in computation costs between the two schemes, the second-order scheme
is more expensive than the first-order one because its convection step is twice as long. Nevertheless,
this is not very penalizing, since generally the convection step is much cheaper than the Stokes step. In
our code, where the Stokes step is solved with the help of a Uzawa method using a preconditioned
conjugate gradient algorithm on the pressure,lo the ratio is about 1:10.

5.1. Numerical results for a steady analytical case: a vortex in a square cavity
Here we have Q =]0, 1[x] —1,1[; for a given parameter b we set
v=1/b. (111)
The body forces are equal to

= nb? cos(nx) sin(mx) 112)
~ | —nb? sin(my) cos(ny) + 4n? cos(my) cos(my)

and the boundary conditions are

u,(0,y) =0, u,(0, y) = cos(my),

u(1,)0, u,(1,y) = —bcos(ny),
uy(x, —§) = —bsin(mx), uy(x, —3) =0,

u,(x, 1) = bsin(mx), u,(x,3) = 0.

In this case we can verify that the problem (1), (2) has the (steady) analytical solution
u,(x, y) = bsin(nx) sin(ny),
u,(x, y) = bcos(nx) cos(my), (113)
p(x, y) = 2m cos(nx) sin(ny).
Note that the solution verifies on Q
—b<u <b, -b<u <b,
lull,= = b, (114)
AP = Proax — Prmin = 41 = 12.57.

The numerical results are given here for 5= 10. The solution (113) is presented in Figure 1.

5.1.1. Behaviour according to time step. We first compare the results obtained by the first- and
second-order schemes for three different time steps (see Figures 2 and 3, where on the left are
represented the iso-Uy lines and on the right the iso-pressure lines). The computations are realized with
the triangular finite element P,—Py, the mesh is regular and the number of velocity nodes is equal to 43
in eace space direction.

To compare the two schemes, we can say that although the velocity is more precisely computed than
the pressure for a given time step, its behaviour changes with the scheme near the boundaries y = —%

and y = % However, in all cases its global order of magnitude is good. This is not the case for the
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Figure 1. Vortex in a cavity—analytical solution: (a) iso-u, lines; (b) iso-pressure lines; (c) velocity field

pressure, which is why we have indicated on Figures 2 and 3 for each case the difference between the
maximum and minimum of its computed value AP (to compare with (114)).

Thus, when comparing Figures 1-3, we observe that for each scheme the results are improved when
the time step is decaying. Moreover, it is obvious that for each time step the results are better for the
second-order scheme. We also notice that the results obtained by the first-order scheme at the time step
At=2 x 10™* are qualitatively similar to those obtained with the second-order one for At= 102,
(Note also that for At=10"* the first-order scheme does not converge; this numerical instability is
probably due to the fact that the time step is too small compared with the space one, which is not the
case for the second-order scheme.)

We also obtain an evaluation of the time accuracy orders by plotting the relative discrete /°°(Q) error

as a function of the time step (see Figure 4).
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Figure 2. Vortex in a cavity—first-order scheme: iso-U, lines ((a) Ar=10"2; (b) Ar=10">; (c) Ar=2 x 10™*); iso-pressure lines
((d) Ar=102, AP=4230; (¢) At= 10", AP=13-45; (f) Ar=2 x 104, AP=1260)

For these computations we have used a regular 81 x 81 velocity mesh. When using logarithmic
scales, the obtained curves are almost straight lines, the slopes of which represents the time order. The
slopes for the first-order scheme are equal to 112 and 1-23 for the velocity and pressure respectively, in
agreement with the results obtained by Pironneau® and Suli.” For the second-order scheme the slope is
197 for both the velocity and the pressure, in agreement with the results of Theorems 1 and 2. Notice
also that according to Figure 4 the second-order scheme is quantitatively more accurate than the first-
order one. For instance, the corresponding velocity errors are almost the same with the second-order
scheme for the time step 10~ (resp. 10~2) and with the first-order scheme for the time step 2 x 10-3
(resp. 7 x 10~*). We also obtain the same pressure errors for the time step 10~ (resp. 10~2) with the
second-order scheme and for the time step 10~5 (resp. 3 x 10~*) with the first-order scheme.

5.1.2. Behaviour according to space step. Here only the second-order scheme is studied, the time
step is fixed (Af=10~>) and we study the variation in the discrete P(Q) relative error of the velocity as
a function of the space step. Still with logarithmic scales, the obtained curve is almost a straight line,
the slope of which represents the space accuracy order s relative to the P(Q) norm (see Figure 5).
Assume that the finite element is P,—P,.. We can then deduce that the numerical accuracy H' order
koum of the velocity is greater than min(k, ¥ + 1, s — 1). For the finite element P,—P, we obtain
§=3-2, 50 kgum = 2. For the finite element P;—iso-P,, for which the pressure is P, on each triangle
- and the velocity is P; on four subtriangles obtained by joining the middle points of the edges, we
obtain s =2, s0 kyum = 1. Note that these results obtained for the steady case are in good agreement
with the result (83) which treats the unsteady case.
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Figure 3. Vortex in a cavity-second-order scheme: iso-U, lines ((a) Ar=10"%; (b) At= 1073; (c) At=10*); iso-pressure lines
((d) Ar=102, AP=12.62; (¢) At=10"3, AP=12.60; (f) Ar=10"*, AP =12:60)

5.2. Numerical results for an unsteady case: natural convection in a rectangular cavity

The case presented here has been studied during a GAMM workshop.?> We treat the laminar flow of
an incompressible fluid in a rectangular cavity with an aspect ratio of 4 (the length L and height H are
equal to 4 and 1 respectively), the vertical walls of which are heated at two different temperatures 0,
and 0, (see Figure 6). We can assume that the Boussinesq approximation is applicable. Moreover, we
consider the limit case where the Prandt] number Pr is equal to zero. In this case, by adimensionalizing
the equations, we obtain that

(i) the temperature 6 can be expressed analytically as 6 =x
(ii) it only remains to solve the coupled velocity—pressure Navier-Stokes equations

%—vAu+u-Vu+gradp=*—Gr%j in Q x]J0, T, (115)
divu=0 inQx]0,T[, (116)

where j is the vertical unit vector and Gr is the Grashoff number.

One of the aims of the workshop was to study the behaviour of the flow according to the Grashoff
number value. According to the guidelines, the computations were to be done successively for several
values of Gr: Gr= 20,000, 25,000, 30,000 and 40,000. The initial velocity was advised to be taken
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Relative error of Ux versus the time step
(a) <

= ™ ”""'K)" \a ..u-b_‘ L .....;)_, T -.mb_‘ ™ ””"D"

(b Relative error of P versus the time siep
0 3

3 /
Blope: 123 (Sope: 19%

Figure 4. Vortex in a cavity (81 x 81 velocity mesh)—relative discrete I°(Q) error as a function of time step: (a) velocity
component Uj; (b) pressure; O, first-order scheme; A, second-order scheme

equal to zero for Gr=20,000 and to the velocity obtained by the previous computation for the other
values of Gr. Our computations have been realized on a regular 97 x 41 velocity node mesh and with
the P,—iso-P; finite element. Note that this very coarse mesh is used only to demonstrate the
superiority of the second-order method and could be improved by refining the spatial discretization.
The time step is equal to 10~*. For the sake of brevity we will focus here on the results obtained for
Gr = 30,000 and 40,000 (for more details see Reference 22). Figures 7-10 present the results obtained
for both schemes. They show at five points A(0-75, 0-5), B(2, 0-19), C(2, 0-5), D(2, 0-81) and E(3-25,
0-5) the velocity component U, as a function of time and the iso-values of the normalized
streamfunction ¥/Gr'/? at a fixed time.
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Relative error of Ux versus the space step
05

otk .
n! ‘:’-l

Figure 5. Vortex in a cavity (200 time steps, Ar=1 x 10~5)—relative discrete () error of velocity component U, as a function
of space step: O, P— Py; A, Py—iso-P,

(i) For Gr=30,000, according to the synthesis of the workshop,? the solution generally obtained
by the contributors is monoperiodic with frequency 17-4 <f < 17-9. The flow has a three-cell structure
(one central main cell and two adjacent small cells). This structure is particularly clear at ¢ =1+ 0-5F,
if where P is the period and f, is the instant when the maximum of max,, |U,(1, y, #)| is reached. Note
also that with very precise computations we can observe that the flow becomes quasiperiodic after a
long time integration. Concerning our numerical results, the second-order scheme (see Figure 8)
produces the periodic state with f= 17-54. The amplitudes of U, are equal to 0-3677 and 0-0315 for the
second- and first-order schemes respectively! The second-order results are therefore very close to the
best obtained in Reference 23, approximately 0-41. Still referring to Reference 23, we observe that the
streamfunction has good features for the second-order scheme. However, this is not the case for the
first-order scheme (see Figure 7): the computed state is periodic with a too large frequency f= 18-5, the
amplitude is too small and the three-cell structure is less sharp. Nevertheless, even with the second-
order scheme we do not observe the quasiperiodic state, perhaps owing to a too short time integration
interval (the computation has been realized in 6000 time steps).

(i) For Gr=40,000, according to the synthesis of the workshop,? the flow generally obtained
exhibits very stable oscillations which persist for several tens of periods. The final solution is again
centrosymmetric and is a two-cell structure. This structure appears with the second-order scheme (see
Figure 10) when a steady state is reached, but only after about 12 periods (recall that our mesh is very
coarse). However, this result is far better than that obtained with the first-order scheme. Indeed, with
the latter we compute a periodic state with frequency f=21.73 and a three-cell structure for the

LY | ¢

v

o= 6=
A E
& 'C .

g -
0 L
i 3

Figure 6. Natural convection in a rectangular cavity—computational domain
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Figure 7. Natural convection in a rectangular cavity at Pr=0, Gr=130,000—first-order scheme: (a) U, at points A-E as a
function of time; (b) iso-values of streamfunction

streamfunction (see Figure 9). These results need to be sharpened by the use of a more refined
approximation in space, so we do not show the plots, which are illustrated in References 14, 15 and 24.

6. CONCLUSIONS

We have presented an algorithm for the incompressible Navier—Stokes equations that uses a finite
element method in space and a second-order Lagrangian time discretization. Second-order accuracy in
time is achieved thanks to a backward differentiation approximation of the total derivative of the
velocity. This method is an extension of the standard (first-order) method of characteristics.
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Figure 8. Natural convection in a rectangular cavity at Pr=0, Gr = 30,000—second-order scheme: (a) U, at points A-E as a
function of time; (b) iso-values of streamfunction

The paper contains theoretical results concerning the H' stability of this scheme under a less
stringent CFL condition than for the first-order scheme” in the case where the transport velocity is
not exactly divergence-free. Optimal convergence results are also given for both velocity and pressure.
The proof is based on a bootstrapping argument that involves

(i) an error estimate at each time step under the hypothesis that the numerical solution at the
previous time steps is bounded
(i) conditional stability derived from the error estimate under the assumption that the continuous

solution is bounded.

This analysis is illustrated with numerical evidence showing that the second-order scheme is far
superior to its first-order counterpart. Note that the extra cost of the second-order scheme only slightly
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increases the cost of the computations (only the convection step is doubled with respect to the first-
order scheme).

In this paper we do not address theoretically the effects of quadrature formulae related to the use of
the interpolation operator on the convected fields. Note that the numerical results exhibit instabilities
when the time step is too small with respect to the space step. This behaviour has already been
observed for the first-order scheme in the literature.'*'® We refer to Reference 14 for theoretical results
in this direction. We also do not address theoretically the behaviour of this scheme either for long
ranges of time or for a viscosity parameter tending to zero. The latter case is treated in Reference 1.
Concerning the former case, however, note that the numerical simulation treats both steady and
unsteady flows. A question that still needs to be considered is related to the drawback generally
assigned to the characteristics method, i.e. the problem of lack of mass preservation. Although we have
not noticed bad results in this direction for the experiments we did, the question needs further
investigation.

If higher accuracy in time is required (e.g. owing to a more accurate discretization in space), we refer
to Reference 22, where a kth-order version of this scheme is presented. The particular choice of third-
and fourth-order schemes coupled with a spectral element spatial discretization has been presented in
Reference 3 and theoretical proofs are given for the third-order scheme in References 1 and 14. The
stability conditions are even weaker in this case than for the first- or second-order version. This adds
even more interest to the high-order characteristics schemes.

APPENDIX

This appendix is devoted to the proof of Lemma 5.
For the sake of convenience letus set for2 < I <N

3u’ — 4u/~! 02 »
L= —e(, )= — a——+ vAw — Vp' + 1. a117)

Using the regularity hypothesis (68), we have from Lemma 4 forn+1 < N.

n+l
3 Al I < Cu, TIAR. (118)

Lemma 6

Wesetfor2 <IN

~ 4@ —uY) - (ﬁ"z _ g1—2)

1
F;= T (119)
We have _
“FIZHLz(n) < C)(**" + 1E sy + IE @) (120)
hence forn+1 < N
n+l 2 n
'_22 AR 2y < Clu, TYHRED + APK(h, AD) + C(u) 1_22 IE" 1220y ALs (121)

where K(h, Af) is the initialization error given in (72).
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Proof. For any x € Q we have from (61) and (67a)
@) - '@ =@ - v (@),
where
% —x =Y - vy wAr
Using the Taylor formula, we have
1@ = w1 < I gAY - U8 )m@)
< I pro@Ad< 1@ — wl= )@+ [w{™ = U@,

where wf,"l)‘ is defined as in (65a). We then obtain

l — — - C) | L] — . o L] :

I =l < CO)I®Y = Wil + 1wy = B ).

Using the notation (66) and the estimate (69), we have

Lo _ .
2T~ u < COXE + 1E g + 1€ la@)- (122)

The estimate of (I/At)llﬁl—2 - g"z l.2@) is proven in the same way and the lemma follows.
We can now introduce Lemmas 7-9.

Lemma 7
Wesetfor2 <IN
3n! — 4—-1—] +5_2
Feeas =
Under the hypothesis (76) we have
. K |ou
F} < CQu, NUY™Y Yk + ——— "— ; 124
Pl < PO T @ ot e by (129
hence for2 < n+1 <N
n+1 112 2 "
IZ;At"F_-, |72 < Clu, MZ, TR, (125)
where M, is defined as in (78).
Proof. Let us split F} in the form
- - - -1 =i —i-2 -
PR Lk 0 1 ik S JP2 . i M0 B 1 W, ) (126)
T At o At )
first t::tn=7} second;rm=7',

We have

Tl < E""Il -1 Mlpg _|__1_||"I'_l -0 pq) .
i@ = 2 At 2 At
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Using the definition of the norm ||.{|;2q) and the Taylor formula, we get

I — Irey _ oo l=1r W2 i
I ="z = n("l (x-m"(x) dx

2 12
= (J M+, 6)d0 dx)
alle- ot
By the Cauchy-Schwarz inequality we obtain
? lom|? 172
In' = 0" lpg) < J(At)(J J 2| & 6) df dX) '
aler| 0t
so that
I =y < 0|51 . (27)
LA ) L2(Q))
Using (69), we deduce
' ="l < CY/(@ADH|= : (128)
!l ety ar)
We estimate ||n'~! — /~2||2(q) in the same way; we deduce then
K ||ou
T < C—s = . (129)
SEARERRVC5) E7] PRyt

To handle the term T, we use the Taylor formula and we get from the definitions (61) and (73)

(! -9 ® = 1@ - ' - U @AY

="' &) - ' &)
'l
- O

4
=U [, Vi@ a

Using the Cauchy—Schwarz ihequality, we get

’l
— —I-1)2 -1)° 1 (<!
It =y < MUY e Jn Ll Vo'~ (R ®)1? it dx. (130)

As At satisfies the condition (76), we can use in (130) the change of variables y = il,(t) and get
according to (75)

- - -1 -
[ = gy < AV liml a3y
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Using similar arguments, we get
M2 =% liz@ < CAIUY ™ lime 'l (132)
We obtain from (69), (131) and (132) the estimate
ITallzy < COMUE™ limay®. (133)

Using (126) and combining the results (129) and (133), the lemma follows.

Lemma 8

For2 < ! < N we set

-1 oy F e
Fﬂ=4(§ -§ ;;t(g - § )' (134)

Under the hypothesis (76) we get the estimate

IF4 < CUUY™ llm@)(E ™ Iancy + 1€ i) o (139)

hence for2 < n+1 <N

v

n+1 n K h’ At :
gAt||H||i,(ﬂ) < C(M,%)(’_ZzAtlg’lf,,(m + At ( )). (136)

Proof. We follow the same lines as in the analysis of the term T; in the second part of the previous
proof until (132) with £ and £~2 instead of n'~! and n'~2 respectively.

The following lemma states an approximation result involving the operator IT), defined in (54).

Lemma 9

For2 < I < N we set
F§ = -V(Lp' - p). (137)

We have forany e>0and 2 < n+1 <N

n+1 n 1
}E (F € — €| < ovlg™ ey + X A1 ey + C(p. T, E_v)hzww +K(h, A1), (138)
=2 =2

Proof. Let us apply the Green formula and recall that £ vanishes at the boundary; we get
(Fs & —€") = (' -p', V-£ - V-£7"). (139)
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Summing (139) from /=2 to n+ 1, we obtain

’Iizl(F{’N §I _ gl—l) — g(nlhpl —Pl, \% .gl) _ l—il(n;.pl-{-l _PI-H, v _gl)

- 140
= 2 - p) - Wp =",V -8 (140)
+ (n/ nt+l n+l' V- §n+l) - (H;‘pz _p2’ V- gl)
Let us set ¢ = ITjp — p; using the Cauchy-Schwarz inequality in (140) leads to
+1
3. - 67| < S vl 1€
=2 ot Lz(,l f+1.12(Q))
+ 2™ = 2™l 1™ Iy + TP = PPl €' |y
Using the inequality 2ab < & + b?, we get for any £ >0
n+l _ 2 n
T e-8)| < ol e ,Z:A”g"il'(n)‘*"ﬁ'@*(n)
+1 +1
I' 3l 30,112 46 el L il 4 "Lz(ﬂ)
+ - “nhp —pP “1}(0)- (141) -

From the initialization assumption (72), the projection error on the pressure (55) and the definition of ¢
we deduce the result of the lemma.

From Lemmas 6-9 we can prove Lemma 5.

Proof of Lemma 5
Let us choose I/, 1 < I < n. From (60) and the definition (49) we have for any v, in ¥}

— =I-1
(3U;,+' - 4U,+T

At ,v,,) +v(VUH, W) — (F*,v,) = 0. (142)

Let us subtract from (142) the quantity

Wi — AW+ W,
20t

, v,,) +wW(Vwit!, Vv,);

we obtain with the notation (66)

H_ g F W+ W
(3§+ 4 +E ,vh) +UTE, Vv = (041, ) - (Mﬂ Ea ’v") o

2A¢ 2At

From (50) and (63) we deduce that

I+1 g1 W, + %,
(3§+ —4E +E ,vh) +Y(VE™, Vv,) = (%, vy) - (WTl R 'vh) T

2At 2At
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which is readily transformed into

1 4 1-1
(3§ o 4§ + g , vh) + v(vgl+l' VV‘,)

2At

141 _ gt 4 1
- _(3“ aw+u, AW 4 VPt — Vh)

24t
It — 4—1 =1 (143)
+ (Vp1+l, vl!) + ( M 2;: + n , vh)
. =I-1
4E-t)-E -&
+ ( 21 Vi)

Let us introduce now the element IT;(p'*!) of Q;. From the definition (49) of ¥ we check that
Vv, €V (@), Vevy) =0;
thus (143) can be rewritten as

Ml _ gl 4 gl-]
(3§ uRd )n+wwﬁﬁv%r=grﬁwn (144)
with
141 _ gl 1 nl-1
Fitl(v,) = _(3" 24A!t o VAU 4 Vpi+! __fl+l,vh),
4 —u)— @ - u-!
FiH(v,) = ( @ —u) Zg' u )'Vh)»
3t — 4wl 7!
WWP(" £+“NJ
I N -
AE — &) = -
wmh(@gzs g{g'

FiH'(v) = L") - p*', Vov,).
For the sake of simplicity let us first set F'*! = ):,.szl Fi*! and ot' = ¢ — ¢! Takingv, = S£M! into
(144), we derive
%(&m’ SEHY) 4 w(VE!, VENT) = ZLAt(égH-l’ seh
+v(VE™, VEY) + FH(SEY),
which can immediately be bounded by

3
E(églﬂ, SEY) + w(VEH, VER!) < 4‘:3_,(55"' 5€) +$(5§I+l, SEHY)
+ -;—(ng, Vgl) + %(VEH-I, V§I+l) + F‘+l(5gl+l);
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thus
(06, 56+~ g O D) + (@8, V) - (VL. VED) < FHGE™. (149

Let us sum (145) from /=1 to n; we derive

n ! sgl »
3IEELE) Y e, vert) < B RGE)
1=2 1=2

1 v
+ 77 08 ) +5 (V€' Ve,

which from the initialization error (71) leads to

1 (5E! SE n+l
> (€. 3€) +2(VE, VEY) < 3 F(SE) + K(h, AY). - (146)
Using the Cauchy-Schwarz inequality and the inequality 2ab < a®+ b7, it follows from (146) that

+K(h, At).

4 ntl n+l
3 (VE, VEY) < €T 3[Rl + | 3 F6E)

Then, using Lemmas 6-9, where & = % in Lemma 9, and under the condition (72) on the initialization,
we obtain

C(M,

2 n l
€1 < S0 g r+ C(p b2 T )@ 44 (4
=2

and (80) follows from the discrete Gronwall lemma (see Reference 25, Chap. V).
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